在《自然》杂志上,设计一组物理学家发表了一篇论文,可释指出一种新的放量超薄材料被设计用来制造难以捉摸的量子态。这些量子态被称为“一维majorana零能模”,现象对量子计算有很大影响。超薄材料kwE 量子计算机的设计核心是量子比特,用于高速计算。可释量子比特对计算机周围的放量噪声和干扰非常敏感,这会在计算中引入误差。现象一种新型的量子比特,称为拓扑量子比特,可以解决这个问题,而一维majorana零能模可能是制造这种拓扑量子比特的关键。kwE 什么是“一维马约拉纳零能量模式”?kwE 一维majorana零能量模式,缩写为MZM,是一组以特定方式组合的电子,因此它们的行为就像一种叫做Mayorana Fermi的粒子,这是粒子物理学家majorana在20世纪30年代首次提出的。如果majorana的理论粒子结合在一起,它们将充当拓扑量子位。问题是,无论是在实验室还是在天文学中,都没有发现它们存在的证据。研究人员没有试图创造一种在宇宙中从未见过的粒子,而是试图让规则的电子表现得像它们一样。kwE 为了制造MZM,研究人员需要非常非常小的材料。MZM是通过向一组电子提供特定数量的能量,然后将它们捕获在一起,使它们无法逃逸而形成的。因此,材料必须是二维的,并且在物理上尽可能薄。为了创造一维MZM,该团队需要制造一种全新的2D材料:拓扑超导体。如图所示,一维majorana零能模位于二维拓扑超导体的边缘。kwE 拓扑超导性是发生在电绝缘体和超导体之间边界的一种特性。为了创建一维MZM,研究团队需要能够在拓扑超导体中一起捕获电子,但这并不像将磁铁吸引到任何超导体那样简单。kwE 研究人员解释说:“如果大部分磁铁放在超导体上,就会阻止它们变成超导体。”“材料之间的相互作用会破坏它们的性能,但是要制作MZM,您需要使材料稍微相互作用。诀窍是使用二维材料:它们之间的相互作用足以形成您需要的MZM特征。”kwE 问题是旋转的本质。在磁性材料中,自旋都在同一个方向上排列,而在超导体中,自旋在相反的方向上交替排列。将磁铁和超导体放在一起通常会破坏自旋的排列和错位。然而,在二维层状材料中,材料之间的相互作用足以“倾斜”原子的自旋,并使它们产生制造MZM所需的特定自旋状态,这被称为拉什巴自旋轨道耦合。kwE 查找——维马约拉纳零能量模式kwE 研究中的拓扑超导体由一层溴化铬构成,只有一个原子厚时才有磁性。研究团队在硒化铌超导晶体上生长了原子厚度的溴化铬岛,并用扫描隧道显微镜测量了它的电学性质。kwE 福斯特教授说:“需要大量的模拟工作来证明我们看到的信号是由MZM引起的,而不是其他影响。”“我们需要证明所有零件都是组装好的,以证明我们生产了MZM。”现在,该团队已经确定他们可以用二维材料制造一维MZM,下一步是尝试将它们制造成拓扑量子位。kwE Liljeroth教授说:“这项研究最酷的部分是我们用二维材料制作了MZM。原则上,它们更容易制造,更容易定制性能,最终成为非常有用的设备。”kwE |
文章内容仅供阅读,不构成投资建议,请谨慎对待。投资者据此操作,风险自担。
4月29日,宿州经开区召开2025年第二季度安全生产、消防安全暨生态环境保护工作会议。会议强调,园区上下要克服麻痹思想、侥幸心理,压紧压实安全生产责任链条,切实抓好防汛抗旱、危化品、建筑施工、城镇燃气
中国消费者报北京讯记者孙蔚)近日,商务部发布了《关于城市一刻钟便民生活圈第四批全国试点、首批全域推进先行区试点评审结果的公示》,确定15个地区作为城市一刻钟便民生活圈首批全域推进先行区试点。“一刻钟便
5月2日,在北京举行的2025年世界泳联跳水世界杯总决赛女子双人10米台决赛中,中国组合陈芋汐/全红婵以350.88分的总成绩夺得冠军。↑获得冠军的中国组合陈芋汐右)/全红婵在颁奖仪式上。↑获得冠军的
滁州网讯全媒体记者汤 珏)4月25日,我市发布2025年一季度经济运行情况。数据显示,一季度全市经济开局良好,主要经济指标稳中有进,增速快于上年全年及同期,回升向好态势明显。根据地区生产总值统一核算结